P-adische Zahl
Für jede Primzahl p bilden die p-adischen Zahlen einen Erweiterungskörper \Q_p des Körpers \Q der rationalen Zahlen; sie wurden 1897 erstmals von Kurt Hensel beschrieben. Diese Körper werden benutzt, um Probleme in der Zahlentheorie zu lösen, oftmals unter Verwendung des Lokal-Global-Prinzips von Helmut Hasse, das – vereinfacht gesprochen – aussagt, dass eine Gleichung genau dann über den rationalen Zahlen gelöst werden kann, wenn sie über den reellen Zahlen \R und über allen \Q_p gelöst werden kann (was aber nicht so allgemein zutrifft, für die genaue Bedeutung siehe dort).